Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

S1-C9	1.8872 (19)	S1-C10	$1.798(2)$
$\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}$	1.423 (2)	$\mathrm{C} 1^{\prime}$ - Cb^{\prime}	1.400 (3)
$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	1.405 (2)	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	1.369 (3)
$\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}$	1.361 (3)	$\mathrm{C} 5^{\prime}-\mathrm{C}^{\prime}$	1.367 (3)
C1...C10	3.273 (4)	$\mathrm{C9a} \cdot \mathrm{Cl} 0^{\prime}$	3.145 (3)
C3'...H8 ${ }^{\prime}$	2.58	$\mathrm{C} 9 \mathrm{a} \cdot \mathrm{H} 10 \mathrm{c}^{\prime}$	2.35
$\mathrm{C} 4 \mathrm{a} \cdot \mathrm{H} 10 \mathrm{c}^{\prime}$	2.50		
$\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C7}^{\prime}$	130.98 (15)	$\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 7^{\prime}$	113.63 (16)
$\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 9$	128.01 (16)	$\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 9$	114.94 (15)
C1'-C9-C8a	115.67 (14)	$\mathrm{Cl}^{\prime}-\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}$	121.83(14)
$\mathrm{Sl}-\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}$	101.70 (11)	$\mathrm{SI}-\mathrm{C} 9-\mathrm{C} 8 \mathrm{a}$	99.44 (11)
$\mathrm{C} 22^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 10^{\prime}$	115.52 (14)	$\mathrm{C} 2^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}$	109.26 (15)
$\mathrm{C} 2{ }^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 9^{\prime}$	109.93 (15)		
$\begin{aligned} & \mathrm{S} 1-\mathrm{C} 9-\mathrm{C} 9 \mathrm{a}-\mathrm{C} 4 \mathrm{a} \\ & \mathrm{C} 4 \mathrm{~b}-\mathrm{C} 8 \mathrm{a}-\mathrm{C} 9-\mathrm{Cl}^{\prime} \end{aligned}$		91.53 (15)	
		143.98 (15)	

The rotation of the methyl H atoms were refined by the circular difference electron density method available in SHELXL97 (Sheldrick, 1997). All H atoms are riding.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: $L S$ in TEXSAN and SHELXLL97. Molecular graphics: TEXSAN and ORTEP (Johnson, 1965). Software used to prepare material for publication: TEXSAN, SHELXL97 and PLATON (Spek, 1990).

Partial support of this research from Southern Illinois University through doctoral fellowship (YH) and Distinguished Professorship (CYM) funding, and from the University Research Foundation (URF, La Jolla, California, USA), is graciously acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1440). Services for accessing these data are described at the back of the journal.

References

Hou, Y. (1997). PhD Dissertation. Southern Illinois University, Carbondale, Illinois, USA.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Meyers, C. Y., Hou, Y., Lutfi, H. G. \& Robinson, P. D. (1995). Am. Chem. Soc. Natl Meet., Chicago, August, Abstract ORGN 297.
Meyers, C. Y., Hou, Y., Lutfi, H. G., Robinson, P. D.. Dunn, H. E. \& Seyler. J. W. (1997). Am. Chem. Soc. Natl Meet., San Francisco. April, Abstract ORGN 351.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN. Single Crustal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nakamura, M., Nakamura, N. \& Ōki, M. (1977). Bull. Chem. Soc. Jpn, 50, 2986-2990.
Ōki, M. (1993). The Chemistry of Rotational Isomers (ch. 3), Vol. 30 of Reactivity and Structure Concepts in Organic Chemistry, edited by K. Hafner, J.-M. Kehn, C. W. Rees, P. v. R. Schleyer, B. M. Trost \& R. Zahradník. New York: Springer-Verlag.
Robinson, P. D., Hou, Y., Lutfi, H. G. \& Meyers, C. Y. (1998). Acta Cryst. C54, 73-77.

Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Prograin for the Refinement of Crusial Structures. University of Göttingen. Germany.
Spek, A. L. (1990). Acta Crust. A46. C-34.

Acta Cryst. (1999). C55, 628-630

2,2'-Dibromobiphenyl

Dean D. MacNetl and Andreas Decken*

Department of Chemistry, University of New Brunsw'ick, Fredericton, Neu' Brunswick, Canada E3B 5A3. E-mail: adecken@unb.ca
(Received 9 June 1998; accepted 20 November 1998)

Abstract

The title compound, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2}$, crystallizes in the orthorhombic space group Pbca. The molecule displays non-planar behaviour and the dihedral angle between the two six-membered rings is $84.8(2)^{\circ}$. The bond length between the two phenyl rings $\left(\mathrm{Cl}-\mathrm{Cl}^{\prime}\right)$ and the $\mathrm{C}-$ Br bond lengths $\left(\mathrm{C} 2-\mathrm{Br} 1\right.$ and $\left.\mathrm{C}^{\prime}-\mathrm{Br} 2\right)$ are 1.499 (9), 1.895 (8) and 1.915 (7) \AA, respectively.

Comment

The biphenyl system has been extensively studied by X-ray crystallography. Of particular interest in relation to bonding theory is the length of the inter-ring $\mathrm{C}-\mathrm{C}$ bond and the interplanar dihedral angle. Furthermore, the inter-ring torsion angle has been correlated to the toxicities of polychlorinated biphenyls (PCBs) (Miao et al., 1996) and also crystal-packing effects (Brock \& Minton, 1989). Most crystal structures in the literature have inter-ring angles in the rather limited range of $30-$ 60° and only ortho-substituted biphenyls display larger angles. We report now the crystal structure of $2,2^{\prime}$-dibromobiphenyl, (I), to provide further structural data for biphenyls having larger inter-ring angles, and as part of our studies of ortho-substituted biphenyls.

(1)

The $\mathrm{C}-\mathrm{C}$ bond distances within the phenyl rings in the title compound are normal and range from 1.365 (11) to 1.402 (9) \AA with a mean of $1.378 \AA$. The corresponding bond angles range from 116.7 (7) to 122.9 (7) ${ }^{\circ}$. The phenyl rings are planar, but the Brl and Br 2 atoms
deviate by 0.049 (9) and 0.037 (10) \AA from planarity. Atoms $\mathrm{C} 4, \mathrm{Cl}, \mathrm{Cl}^{\prime}$ and C^{\prime} are almost collinear, the tilt angle being 2.0°. The $\mathrm{C}-\mathrm{Br}$ bond lengths are 1.895 (8) and 1.915 (7) \AA for $\mathrm{C} 2-\mathrm{Brl}$ and $\mathrm{C}^{\prime}-\mathrm{Br} 2$, respectively. The inter-ring $\mathrm{C} 1-\mathrm{Cl}^{\prime}$ distance is 1.499 (9) \AA, which compares well with values usually observed for halogenated biphenyls which range from 1.467 (14) \AA for $2,2^{\prime}, 5,5^{\prime}$-tetrachlorobiphenyl (Miao et al., 1996) to 1.55 (2) A for 2,3,3'-trichlorobiphenyl (Moes \& Lenstra, 1986). The dihedral angle between the two phenyl rings is $84.8(2)^{\circ}$ and the average of the four torsion angles around the central $\mathrm{Cl}-\mathrm{C} 1^{\prime}$ bond is $85.4(8)^{\circ}$. This large angle, due to intramolecular $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \mathrm{H}$ repulsive interactions, is only surpassed by $86.9(5)^{\circ}$ for decachlorobiphenyl (Pedersen, 1975) and 87.9° for $2,2^{\prime}, 4,4^{\prime}, 6,6^{\prime}$-hexachlorobiphenyl (Singh \& McKinney, 1979). In comparison, the inter-ring angles for 2-fluorobiphenyl (Rajnikant et al., 1995), 2,2'-dichlorobiphenyl (Rømming et al., 1974) and 2,2'-dibromooctafluorobiphenyl (Hamor \& Hamor, 1980) are considerably smaller, measuring 54.1 (3), 66.5 and $76.0(5)^{\circ}$, respectively. Rømming et al. (1974) have previously compared inter-ring angles in 2,2'-dihalobiphenyls observed in the gas phase with calculated values. In general, the calculated values deviate significantly from those observed in the gas phase and solid state. However, the angle computed for the title compound is 82°, which is in close agreement with the X-ray experiment. Interestingly, the value observed in the gas phase is 75°, which is significantly lower than the value obtained in our experiment.

Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.

Experimental

$2,2^{\prime}$-Dibromobiphenyl was prepared and purified according to literature procedures (Gilman \& Gaj, 1957). The crude product was recrystallized from 95% ethanol and single crystals were obtained from 95% ethanol solutions at 270 K .

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2}$
$\mathrm{Cu} K \alpha$ radiation
$M_{r}=312.00$
$\lambda=1.54178 \AA$

Orthorhombic
Pbca
$a=14.0723$ (9) \AA
$b=7.462(2) \AA$
$c=21.489(1) \AA$
$V=2256.5(5) \AA^{3}$
$Z=8$
$D_{x}=1.837 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5R diffractometer
$\omega-2 \theta$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.205, T_{\text {max }}=0.269$
1838 measured reflections
1838 independent reflections
Cell parameters from 21 reflections
$\theta=35-39.4^{\circ}$
$\mu=8.751 \mathrm{~mm}^{-1}$
$T=296$ (1) K
Needle
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$
Colourless

835 reflections with
$F>4 \sigma(F)$
$\theta_{\text {max }}=63.52^{\circ}$
$h=-16 \rightarrow 0$
$k=0 \rightarrow 8$
$l=0 \rightarrow 24$
3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.033$

$$
(\Delta / \sigma)_{\max }=0.001
$$

$w R\left(F^{2}\right)=0.113$

$$
\Delta \rho_{\max }=0.364 \mathrm{e}^{-3}
$$

$$
\Delta \rho_{\min }=-0.476 \mathrm{e}^{-3}
$$

$S=1.032$
1837 reflections
129 parameters
H -atom parameters
constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.035 P)^{2}\right. \\
&+2.5 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

Extinction correction: empirical
Extinction coefficient: 0.00125 (7)

Scattering factors from International Tables for Crystallography (Vol. C)

The structure was solved by direct methods. H atoms were included in idealized positions and constrained to ride on the parent atom while a common $U_{\text {iso }}$ was refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994a). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1994b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL (Sheldrick, 1990b). Software used to prepare material for publication: SHELXTL.

This work was supported by the University of New Brunswick. The authors thank T. Stanley Cameron at Dalhousie University for data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1062). Services for accessing these data are described at the back of the journal.

References

Brock, C. P. \& Minton, R. P. (1989). J. Am. Chem. Soc. 111, 45864593.

Gilman, H. \& Gaj, B. J. (1957). J. Org. Chem. 22, 447-449.
Hamor, M. J. \& Hamor, T. A. (1980). Acta Cryst. B36, 1402-1406.
Miao, X.-S., Chu, S.-G., Xu, X.-B. \& Jin, X.-L. (1996). Acta Cryst. C52, 2582-2583.

Moes, G. W. H. \& Lenstra, A. T. H. (1986). Toxicol. Environ. Chem. 12, 255-266.
Molecular Structure Corporation (1994a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1994b). TEXSAN. Single Crystal Structure Analysis Software. MSC. 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cr.st. A24, 351-359.
Pedersen, B. F. (1975). Acta Cryst. B31, 2931-2933.
Rajnikant, Watkin, D. \& Tranter, G. (1995). Acta Cryst. C51, 14521454.

Rømming, C., Seip, H. M. \& Øymo, I.-M. A. (1974). Acta Chem. Scand. Ser. A, 28, 507-514.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL. Version 4.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Singh, P. \& McKinney, J. D. (1979). Acta Cryst. B35, 259-262.

Acta Cryst. (1999). C55, 630-632

(\boldsymbol{E})-Dimethyl 4-isopropyl-3-[tris(trimethyl-silyl)silylmethylene]-1,1-cyclohexanedicarboxylate

Rodolfo Moreno-Fuquen, Luz Marina JaramilloGómez and Jaime Martín-Franco

Departamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia.
E-mail: romoreno@hypatia.univalle.edu.co
(Received 16 April 1998; accepted 21 October 1998)

Abstract

The title isomer carbocyclic compound, $\mathrm{C}_{23} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}_{4}$, was prepared by treatment of the 1,7 -enyne system dimethyl (4-methylpent-3-enyl)propanodioate with tris(trimethylsilyl)silicon hydride in the presence of azobisisobutyronitrile. The $\mathrm{C}=\mathrm{C}$ distance is 1.335 (4) \AA, the $\mathrm{C}=\mathrm{C}-\mathrm{Si}$ bond angle is $132.6(2)^{\circ}$ and the $\mathrm{C}-$ $\mathrm{C}=\mathrm{C}$-Si torsion angle is $6.2(5)^{\circ}$. The E configuration of the exocyclic double bond has been confirmed by the present X-ray study.

\section*{Comment}

Tris(trimethylsilyl)silane (TTMS) has emerged as an alternative to the more common tri- n-butyltin hydride in free-radical chain processes (Curran, 1988; Chatgilialoglu, 1992, 1995). The hydrosilylating ability of

TTMS with alkenes and alkynes (Chatgilialoglu et al., 1992) has been used in particular for intramolecular addition of the corresponding alkyl (Kulicke et al., 1992) or vinyl (Miura et al., 1993) radicals generated on the other additional double bond. As a result of synthetic work in the free-radical cyclization of $1,6-$ and 1,7 -enyne systems through silylation of the triple bond with TTMS, the six-membered cyclic compound, (E)-dimethyl 4-isopropyl-3-[tris(trimethylsilyl)-silylmethylene]-1,1-cyclohexanedicarboxylate, (2), has been isolated in 51% yield as a colourless crystal with a melting point of 356 (1) K.

No other compounds in which the bulky 'supersilyl' $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group is bonded to the methylene exocyclic double bond of the cyclohexane ring such as (2) are available in the literature. The enol system formed by 2,2-dimethyl-1-tris(trimethylsilyl)silylethanol (Frey et al., 1994), compound (3), is however the most similar one to compare with some parameters of the title compound. Parameters of the title compound can also be compared with 1-tris(trimethylsilyl)silyl-3,4,5,6-tetrakis-(trimethylsilyl)cyclohex-1-ene (Puranik \& Fink, 1994), compound (4), where the supersilyl group is bonded to an endocyclic double bond of the cyclohexene ring. The crystal-structure determination of compound (2) was undertaken to confirm the E configurations of the exocyclic double bond. The $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{C}-\mathrm{Si}$ distances of the tris(trimethylsilyl)silane of the title compound are close to the distances reported for the 'supersilyl' $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group (Frey et al., 1994). The $\mathrm{Cl}-\mathrm{C} 7$ distance reveals the existence of a double bond. The C7-Sil distance changes from $1.94 \AA$ in compound (3) and 1.904 (3) \AA in compound (4) to 1.888 (3) \AA in the title compound. This difference suggests that compounds (3) and (4) have more steric strains due to the presence of large pendant groups in their structures. The $\mathrm{Cl}-\mathrm{C} 7-\mathrm{Sil}$ angle is 133.2° in compound (3). This value is close to the value found in the present structure [132.6(2) ${ }^{\circ}$]. This relatively large bond angle is likely to be due to the steric effects of the bulky groups in both compounds. A torsion angle of $6.2(5)^{\circ}$ for $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{Sil}$ shows the E configuration of compound (2). The cyclohexane backbone adopts a chair conformation with $\theta=174(1)^{\circ}$ and $\varphi=85(1)^{\circ}$ (Cremer \& Pople, 1975). The geminal carboethoxy groups bonded to C 5 of the cyclohexane ring are oriented in such a way that the $\mathrm{C}=\mathrm{O}$ groups maintain

